Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity.

نویسندگان

  • A D Boozer
  • A Boca
  • R Miller
  • T E Northup
  • H J Kimble
چکیده

Localization to the ground state of axial motion is demonstrated for a single, trapped atom strongly coupled to the field of a high finesse optical resonator. The axial atomic motion is cooled by way of coherent Raman transitions on the red vibrational sideband. An efficient state detection scheme enabled by strong coupling in cavity QED is used to record the Raman spectrum, from which the state of atomic motion is inferred. We find that the lowest vibrational level of the axial potential with zero-point energy variant Planck's over 2 h omega a/2kB = 13 microK is occupied with probability P0 approximately 0.95.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of Raman transitions in cavity QED

We present two schemes for driving Raman transitions between the ground-state hyperfine manifolds of a single atom trapped within a high-finesse optical cavity. In both schemes, the Raman coupling is generated by standing-wave fields inside the cavity, thus circumventing the optical access limitations that free-space Raman schemes must face in a cavity system. These cavity-based Raman schemes c...

متن کامل

Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency

We investigate a hybrid optomechanical system composed of a micromechanical oscillator as a movable membrane and an atomic three-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via electromagnetically induced transparency (EIT) in the atomic medium allows for strong coupling of the membrane’s mechanical oscillations to the collective atomic ground...

متن کامل

Numerical Calculation of Resonant Frequencies and Modes of a Three-Atom Photonic Molecule and a Photonic Crystal in an External Cavity

In the present paper, resonant frequencies and modes of a three-atom photonic molecule and a photonic crystal placed within a cavity are numerically calculated. First, governing formulation in transverse electric field mode (TE) is obtained using Maxwell equations. Then, an algorithm based on a finite difference scheme and matrix algebra is presented. The algorithm is then implemented in a comp...

متن کامل

Observation of the vacuum Rabi spectrum for one trapped atom.

The transmission spectrum for one atom strongly coupled to the field of a high finesse optical resonator is observed to exhibit a clearly resolved vacuum Rabi splitting characteristic of the normal modes in the eigenvalue spectrum of the atom-cavity system. A new Raman scheme for cooling atomic motion along the cavity axis enables a complete spectrum to be recorded for an individual atom trappe...

متن کامل

Laser cooling to the zero-point energy of motion.

The subject of laser cooling of ions and neutral atoms is currently of great experimental and theoretical interest. ' It has been applied to high-resolution spectroscopy, low-energy collisions, quantum jumps, and photon antibunching. In all cooling experiments done so far, the oscillation frequency co, of the particle in its confining well was less than the linewidth I of the cooling transition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 97 8  شماره 

صفحات  -

تاریخ انتشار 2006